بررسی توانایی آنتاگونیستی قارچ های اندوفیت ریشه و گونه های تریکودرما برروی قارچ Macrophomina phaseolinaدر شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیماری شناسی گیاهی دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران ایران.

2 گروه گیاهپزشکی ، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه ایران.

3 گروه مطالعاتی گیاهان داروئی و میکروبی، دانشگاه آمیتی نویدا ایالت اترپرادش، هندوستان.

چکیده


در این تحقیق، از دو قارچ اندوفیت ریشه (Sebacina vermifera و Piriformospora indica) و دو گونه تریکودرما
(T. virideTrichoderma harzianum (T-100) علیه قارچ Macrophomina phaseolina استفاده گردید . توانایی
آنتاگونیستی قارچ های اندوفیت ریشه و گونه های تریکودرما از طریق آزمایش های درون شیشه ای و به کمک روش کشت متقابل، کلنیزاسیون و تولید متابولیت های فرار مورد ارزیابی قرار گرفت مساحت پرگنه M. phaseolina. هر روز اندازه گیری و درصد کاهش رشد هر روز در مقایسه با تیمار شاهد محاسبه شد. در کشت متقابل، تیماری که شامل هر دو گروه قار چ های اندوفیت و گونه های تریکودرما بود، بیشترین اثر بازدارندگی را بر روی رشد میسلیومی M. phaseolina داشت. بررسی قدرت کلنیزاسیون نشان داد که قارچ های آنتاگونیست قادرند پرگنه M. phaseolinaرا در برگرفته و آن را تجز یه نمایند . نتایجآزمون متابولیت های فرار نیز مشخص نمود که قارچ های اندوفیت بر خلاف گونه های تریکودرما قادر به تولید متابولیتهای فرارنمی باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Study on antagonistic efficacy of root endophytic Fungi and Trichoderma species on Macrophomina phaseolina in vitro

نویسندگان [English]

  • Fariba Abbaszadeh 1
  • Ebrahim Mohammadi Goltapeh 1
  • E. Pourjam 1
  • Amir Khorasani 1
  • Y. Razaei Danesh 2
  • A. Varma 3
چکیده [English]

Two root endophytic fungi (Piriformospora indica Varma and Sebacina vermifera Warcup), as well as two species of Trichoderma (T. viride and T. harzianum (T-100)) were used against Macrophomina phaseolina. Antagonistic ability of root endophytic fungi and Trichoderma species against the pathogen in dual culture, volatile metabolites and colonization were evaluated. Assays in dual culture revealed that antagonistic fungi produced a good zone of inhibition. Interaction of root endophytic fungi and Trichoderma species in combination resulted in maximum inhibition of mycelial growth and microsclerotia formation of the pathogen. The volatile metabolite studies revealed that endophytic fungi did not act by producing volatile metabolites but possibly by other mechanisms of competition or parasitism. As for mechanism of colonization, it was revealed that antagonistic fungi were able to overgrow the colony of the pathogen and lyse its mycelia.

کلیدواژه‌ها [English]

  • biological control
  • Piriformospora indica
  • Sebacina vermifera
  • Trichoderma spp
  • Macrophomina phaseolina
  1. Adekunle, A.T., Ikotun, T., Florini, D.A., Cardwell, K.F. (2006). Field evaluation of selected formulations of Trichoderma species as seed treatment to control damping-off of cowpea caused by Macrophomina phaseolina. African Journal of Biotechnology 5: 419–424.
  2. Aly, A.A., El-Shazly, A.M.M., Youssef, R.M., Omar, M.R. (2001). Chemical and biological control of charcoal rot of cotton caused by Macrophomina phaseolina. Journal of Agricultural Science Mansoura University 26: 7661–7674.
  3. Azcon-Aguilar, C. and Barea, J.M. (1996). Arbuscular mycorrhizas and biological control of soilborne plan pathogens an overview of the mechanisms involved. Mycorrhiza 6: 457-464.
  4. Cordier, C., Pozo, M. J., Gianinazzi, S. and Gianinazzi-Pearson, V. (1998). Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by arbuscular mycorrhizal fungus. Mol. Plant Microbe Interc. 11: 1017-1028.
  5. Crous, P. W., Slipper, B., Wingfield. M. J., Rheeder, J., Marasas, W. F. O., Philips, A. J. L., Alves, A., Burgress, T., Barber, P. and Groenewald, J. Z. (2006). Phylogenic lineage in the Botryosphaeriaceae. Studies in Mycology 55: 235-253.
  6. Datnoff, L. E., Nemec, S. and Pernezny, K. (1995). Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Control 5: 427–431.
  7. Dehne, H. W., Schonbeck, F. and Baltruschat, H. (1978). Untersuchungen zum einfluss der endotrophen Mycorrhiza auf Pflanzenkrankheiten: 3 Chitinase-aktivitat und ornithinzyklus (The influence of endotrophic mycorrhiza on plant disease: 3 chitinase-activity and ornithinecycle). J. Plant Dis. Protec. 85: 666-678.
  8. De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. (1998). Induced systemic resistance in Trichodermq harzianum (T-39) biocontrol of Botrytis cinerea. Eur. J. Plant pathol. 104: 279-286.
  9. Dennis, C., Webster, J. (1971). Antagonistic properties of species groups of Trichoderma III. Hyphal Interaction. Trans. British Mycological Society 57: 363-369.
  10. Dhingra, O. D. and Sinclair, J. B. (1973). Location of Macrophomina phaseoli on soybean plants related to culture characteristics and virulence. Phytopathol. 63: 934-936.
  11. Dolatabadi, K.H., Goltapeh, E.M., Varma, A., and Rohani, N. (2011). In vitro evaluation of arbuscular mycorrhizal-like fungi and Trichoderma species against soilborne pathogens. J. Agriculture Technology. 7(1): 73-74.
  12. Domsch K H, Gams W and Anderson T H. 1980. Compendium of Soil fungi. Vol.1. New York: Academic Press.
  13. Dubey, S. C. and Patel, B. (2001). Evaluation of fungal antagonist against Thanatephorus cucumeris causing web blight urd and mung bean. Indian Phytopath. 54: 206-209.
  14. Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur. J. Plant Pathol. 102: 719–732.
  15. Etebarian, H. R. (2006). Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. J. Agric. Sci. Technol. 8: 243-250.
  16. Fernandez, R. B., De-Santiago, A., Hernandez-Delgado, S. and Mayek-Perez, N. (2006). Characterization of Mexican and isolates of Macrophomina phasolina based on morphological characteristics, pathogenicity on bean seeds endoglocans genes. Plant Pathology. 88: 53-60.
  17. Goidanich G. 1947. A revision of the genus Macrophomina phaseolina petrak type species: Macrophomina phaseolina (Tassi) Goid. Macrophomina phaseolina (Maubl.) Ashby. Annals of Sper. Agriculture 1: 449-461.
  18. Goyal, S. P., Jandaik, C. L. and Sharma, V. P. (1994). Effect of weed fungi metabolites on the mycelia growth of Agaricus bisporus (Lang.) Imbach. Mushroom Research. 3: 69-74.
  19. Harman, G. E. (2000). Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum (T-22). Plant Dis. 84: 377–393.
  20. Hill, T. W. and Kaefer, E. (2001). Improved protocols for Aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet News Letter. 48: 20-21.
  21. Howell, C. R. (2002). Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathol. 92: 177–180.
  22. Kaefer, E. (1977). Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Advances Genetic. 19: 33-131.
  23. Karthikeyan, V., Sankaralingam, A., Nakkeeran, S. (2006). Management of groundnut root rot with biocontrol agents and organic amendments. Arch. Phytopatol. Plant Prot. 39: 215–223.
  24. Kucuk, C., Kivanc, M. (2003). Isolation of Trichoderma spp. and their antifungal, biochemical and physiological features. Turk J. Bio., 127: 247-253.
  25. Malla, R., Prasad, R., Kumari, R., Giang, P. H., Pokharel, U., Oelmuller, R., and Varma, A. (2004). Phosphorus solubilizing symbiotic fungus: Piriformospora indica. Endocytob. Cell Res. 15: 579-600.
  26. Mihail, J. D. 1992. Macrophomina pp. 134-136, In LL Singleton, JD Mihail and CM Rush (eds). Methods for research on soilborne phytopathogenic fungi. ST. Paul, MN: American Phytopathological Society.
  27. Miller, J. H., Giddens, J. E. and Foster, A. A. (1975). A survey of the fungi of forest and cultivated soils of Georgia.  Mycologia. 49: 779-808.
  28. Morton, D. T., and Stroube, N. H., (1955). Antagonistic and stimulatory effects of microorganism upon Sclerotium rolfsii. Phtopathology, 45: 419-420.
  29. Ndiago M. 2007. Ecology and management of charcoal rot (Macrophomina phaseolina) on cowpea in the Sahel. [PhD]. [the Netherland]: Wagening en University.
  30. Nemec, S., Datnoff, L. E. and Strandberg, J. (1996). Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus. Crop Protect. 15: 735-742.
  31. Oelmuller, R., Shahollari, B., Peskan-Berghofer, T., Trebicka, A., Giong, P. H., Sherameti, I., Oudhoff, M., Venus, Y., Altschmied, L. and Varma, A. (2004). Molecular analyses of the interaction between Arabidopsis roots and the grwoth –promoting fungus Piriformospora indica. Endocytob. Cell Res. 15(2): 504-517.
  32. Papavizas, G. C. (1985). Trichoderma and Gliocladium: biology and potential for biological control. Ann. Rev. Phytopathol. 23: 23-54.
  33. Peskan-Berghofer, T., Shahollari, B., Giang, PH., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A., Oelmuller, R., (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiol. Plant. 122: 465-477.
  34. Pham, G. H., Kumari, R., Singh, A. N., Malla, R., Prasad, R., Sachdev, M., Kaldorf, M., Buscot, F., Oelmuller, R., Hampp, R., Saxena, A. K., Rexer, K-H., Kost, G., and Varma, A. (2004). Axenic cultures of Piriformospora indica. Plant Surface Microbiology. Springer-Verlag. 593-613 pp.
  35. Samuels, G. J. (1996). Trichoderma: a review of biology and systematics of the genus. Mycol. Res. 100: 923-935.
  36. Short, G. E., and Wyllie, T. D. (1978). Inoculum potential of Macrophomina phaseolina. Phytopathology. 68: 742-746.
  37. Singh A N, Singh A R, Kumari M, Kumar S, Rai M K, Sharma A P and Varma A. 2003. AMF-like-fungus: Piriformospora indica – a boon for plant industry. pp. 101-124, In BN Prasad (ed). Biotechnology in Sustainable Biodiversity and Food Security. India: Oxford & IBH Publishing Co.
  38. Sivasithamparam, K. and Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics. 1: 139-191.
  39. Varma A, Rai M K, Sudha Sahay N. 2000. Microbial-biotechnology: New paradigms and role in sustainable agriculture. pp. 22-37, In RC Rajak (ed). Microbial Biotechnology for Sustainable Development and Productivity. India: Scientific Publishers.
  40. Varma A, Singh A, Sudha Sahay N S, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Maier W, Walter M, Strack D and Kranner I. 2001. Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. pp. 125-150, In B Hock (ed). The Mycota IX. Berlin, Heidelberg: Springer-Verlag.
  41. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Wettstein, D., Franken, P. and Kogel, K-H. (2005). The endophytic fungus Piriformospora indica reprograms barely to salt-tolerance, disease resistance, and higher yield. PANS. 102(38): 13386-13391.
  42. Warcup, J. H. (1988). The mycorrhizal relationsphips of Australian orchids. New Phytol. 87: 371-381.
  43. Weiss, M., Selosse, M. A., Rexer, K. H., Urban, A. and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with abroad mycorrhizal potential. Mycological Res. 108: 1003-1010.
  44. Woo S L. 2002. Mycoparasitic Trichoderma strains are activated by host-derived molecules. Paper presented at: 6th European Conference on Fungal Genetics; 6–9 April; Pisa, Italy.
  45. Zimand, G., Elad, Y. and Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathol. 86: 1255–1260.